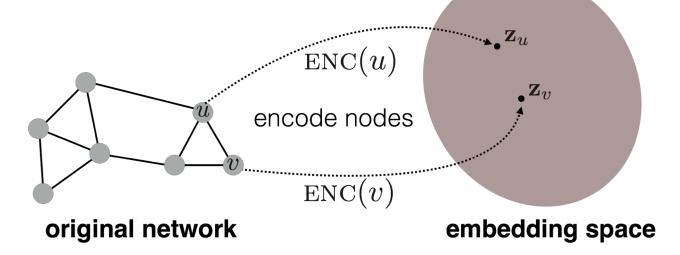
This Talk

- 1) Node embeddings
 - Map nodes to low-dimensional embeddings.
- 2) Graph neural networks
 - Deep learning architectures for graphstructured data
- 3) Generative graph models
 - Learning to generate realistic graph data.

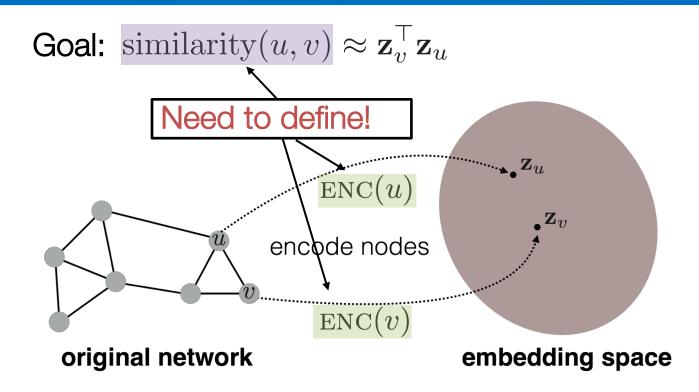
Part 2: Graph Neural Networks

Embedding Nodes

 Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network.



Embedding Nodes



Two Key Components

• Encoder maps each node to a low-dimensional vector. d-dimensional $ENC(v) = \mathbf{z}_{v}$ embedding

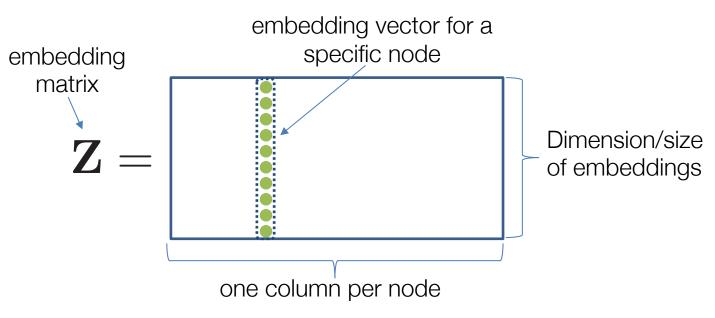
$$\operatorname{ENC}(v) = \mathbf{z}_v$$
 ember
node in the input graph

 Similarity function specifies how relationships in vector space map to relationships in the original network.

$$\begin{array}{c} \text{similarity}(u,v) \approx \mathbf{z}_v^{\top} \mathbf{z}_u \\ \text{Similarity of } u \text{ and } v \text{ in} \\ \text{the original network} \end{array} \quad \begin{array}{c} \text{dot product between node} \\ \text{embeddings} \end{array}$$

From "Shallow" to "Deep"

 So far we have focused on "shallow" encoders, i.e. embedding lookups:



From "Shallow" to "Deep"

- Limitations of shallow encoding:
 - O(|V|) parameters are needed: there no parameter sharing and every node has its own unique embedding vector.
 - Inherently "transductive": It is impossible to generate embeddings for nodes that were not seen during training.
 - Do not incorporate node features: Many graphs have features that we can and should leverage.

From "Shallow" to "Deep"

 We will now discuss "deeper" methods based on graph neural networks.

$$ENC(v) = complex function that depends on graph structure.$$

 In general, all of these more complex encoders can be combined with the similarity functions from the previous section.

Outline for this Section

- We will now discuss "deeper" methods based on graph neural networks.
 - 1. The Basics
 - 2. Graph Convolutional Networks
 - 3. GraphSAGE
 - 4. Gated Graph Neural Networks
 - 5. Graph Attention Networks
 - 6. Subgraph embeddings

The Basics: Graph Neural Networks

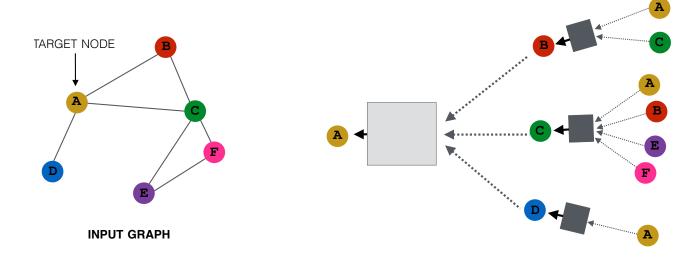
Based on material from:

- Hamilton et al. 2017. <u>Representation Learning on Graphs: Methods</u> and <u>Applications</u>. *IEEE Data Engineering Bulletin on Graph Systems*.
- Scarselli et al. 2005. <u>The Graph Neural Network Model</u>. *IEEE Transactions on Neural Networks*.

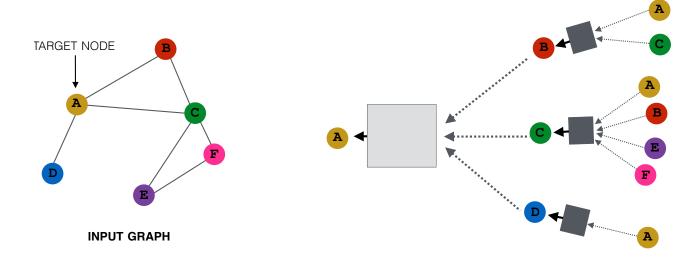
Setup

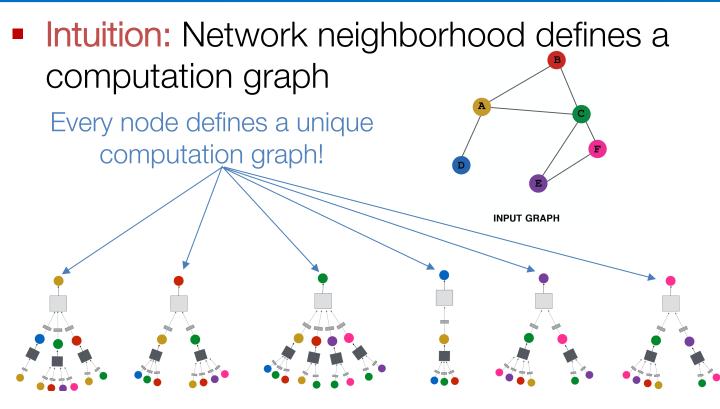
- Assume we have a graph G:
 - V is the vertex set.
 - A is the adjacency matrix (assume binary).
 - $X \in \mathbb{R}^{m \times |V|}$ is a matrix of node features.
 - Categorical attributes, text, image data
 - E.g., profile information in a social network.
 - Node degrees, clustering coefficients, etc.
 - Indicator vectors (i.e., one-hot encoding of each node)

 Key idea: Generate node embeddings based on local neighborhoods.

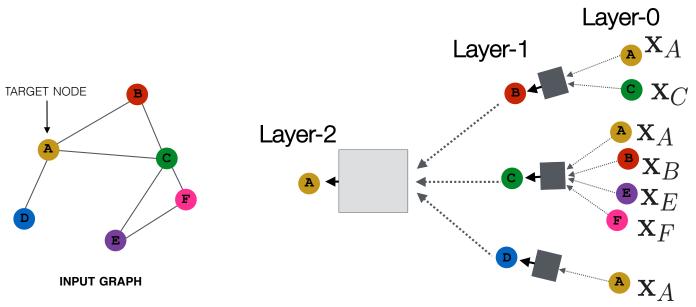


 Intuition: Nodes aggregate information from their neighbors using neural networks



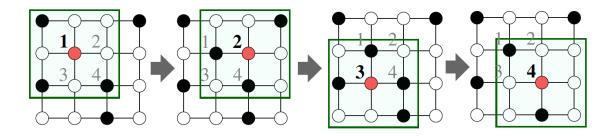


- Nodes have embeddings at each layer.
- Model can be arbitrary depth.
- "layer-0" embedding of node u is its input feature, i.e. x_u .



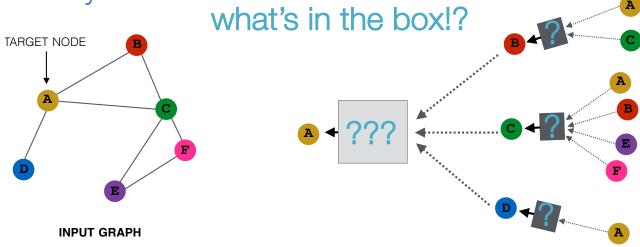
Neighborhood "Convolutions"

 Neighborhood aggregation can be viewed as a center-surround filter.

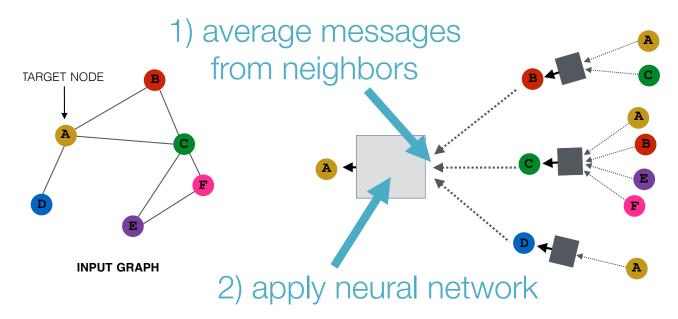


 Mathematically related to spectral graph convolutions (see <u>Bronstein et al., 2017</u>)

 Key distinctions are in how different approaches aggregate information across the layers.

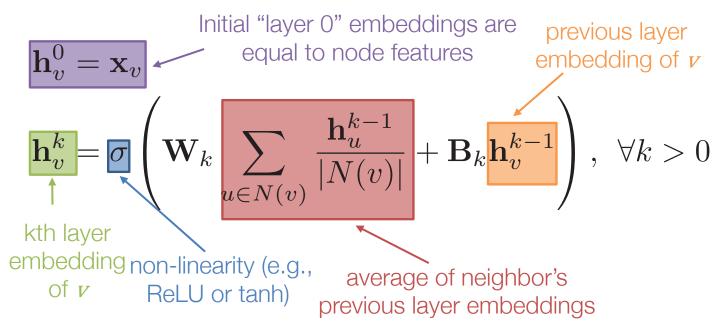


 Basic approach: Average neighbor information and apply a neural network.

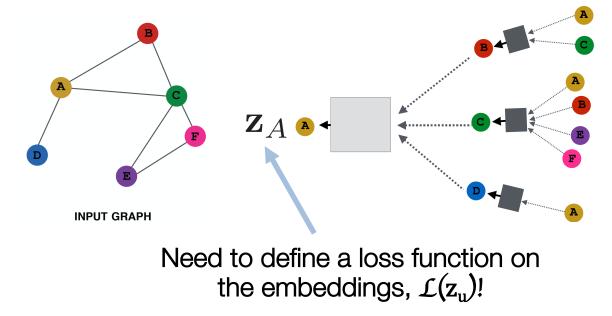


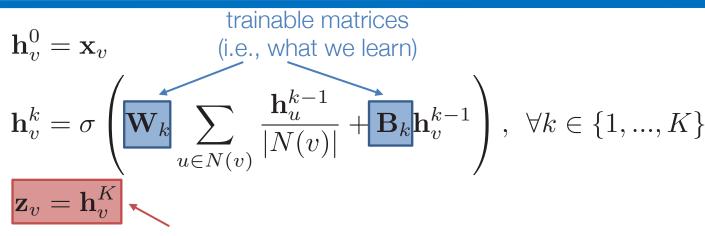
The Math

 Basic approach: Average neighbor messages and apply a neural network.



How do we train the model to generate "highquality" embeddings?

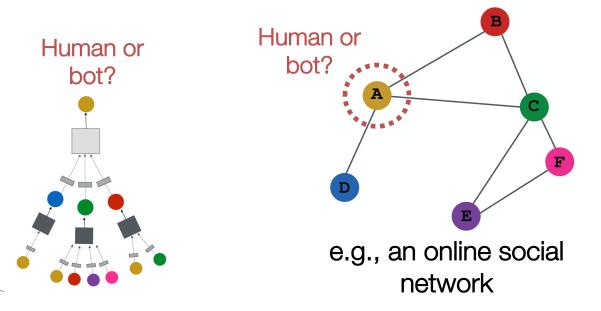




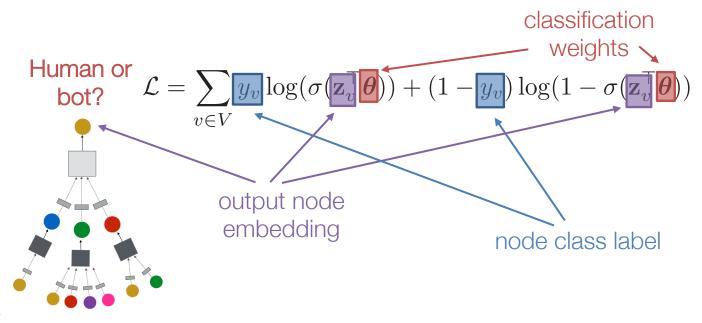
- After K-layers of neighborhood aggregation, we get output embeddings for each node.
- We can feed these embeddings into any loss function and run stochastic gradient descent to train the aggregation parameters.

- Train in an unsupervised manner using only the graph structure.
- Unsupervised loss function can be anything from the last section, e.g., based on
 - Random walks (node2vec, DeepWalk)
 - Graph factorization
 - i.e., train the model so that "similar" nodes have similar embeddings.

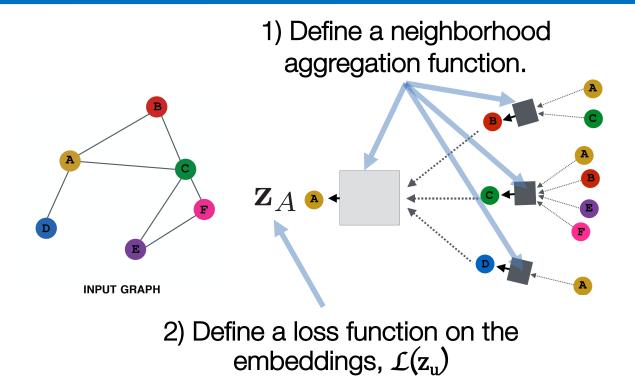
• Alternative: Directly train the model for a supervised task (e.g., node classification):



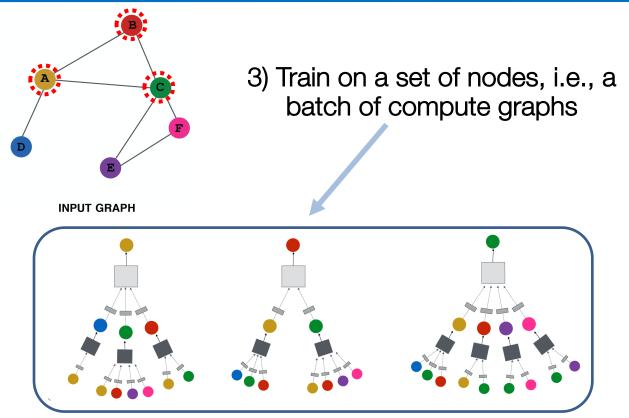
 Alternative: Directly train the model for a supervised task (e.g., node classification):



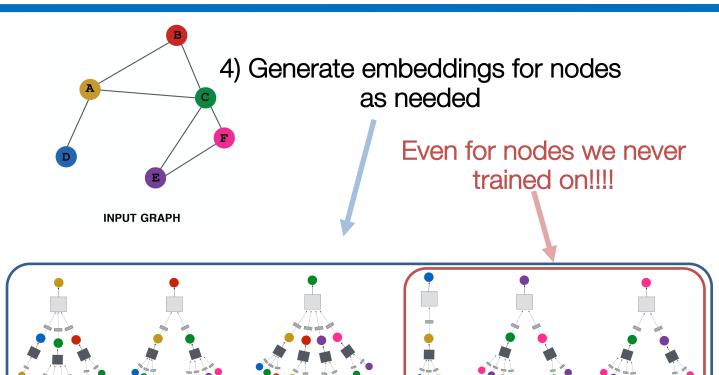
Overview of Model



Overview of Model

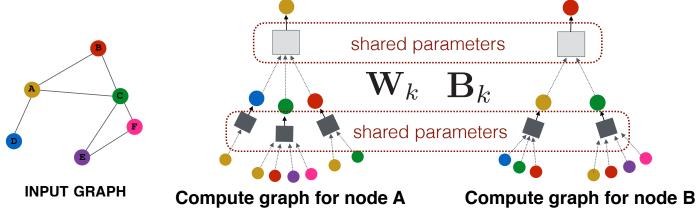


Overview of Model

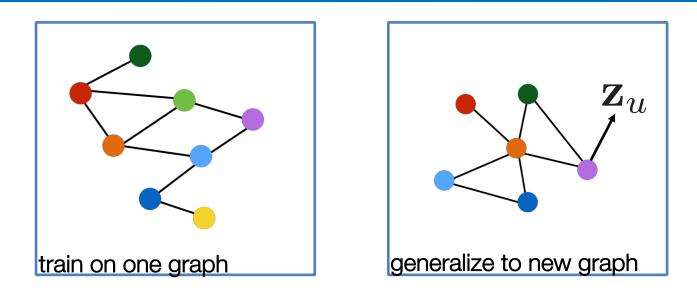


Inductive Capability

- The same aggregation parameters are shared for all nodes.
- The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!



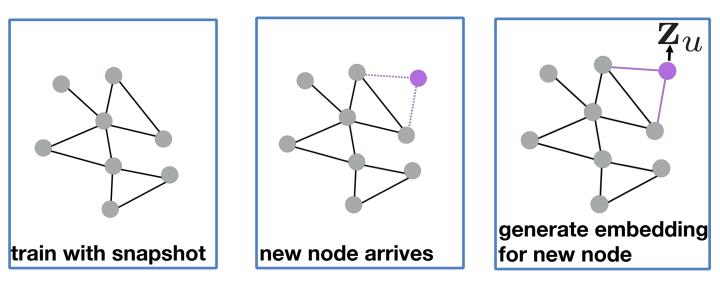
Inductive Capability



Inductive node embedding -> generalize to entirely unseen graphs

e.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

Inductive Capability



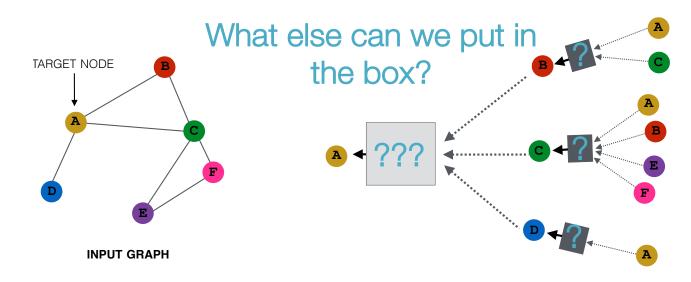
Many application settings constantly encounter previously unseen nodes. e.g., Reddit, YouTube, GoogleScholar,

Need to generate new embeddings "on the fly"

Quick Recap

- Recap: Generate node embeddings by aggregating neighborhood information.
 - Allows for parameter sharing in the encoder.
 - Allows for inductive learning.
- We saw a basic variant of this idea... now we will cover some state of the art variants from the literature.

 Key distinctions are in how different approaches aggregate messages



Graph Convolutional Networks

Based on material from:

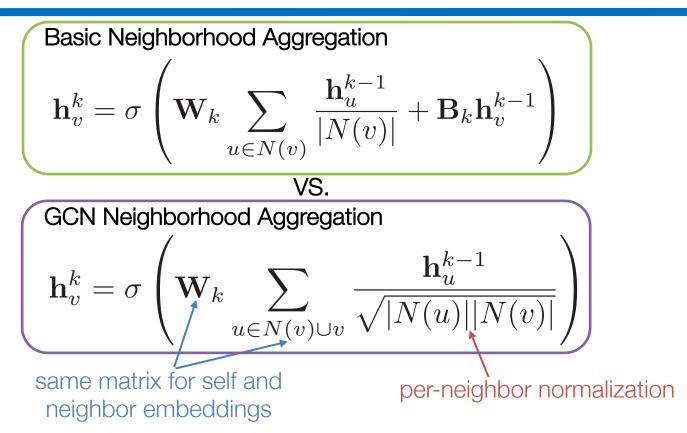
 Kipf et al., 2017. <u>Semisupervised Classification with Graph Convolutional</u> <u>Networks</u>. *ICLR*.

Graph Convolutional Networks

 Kipf et al.'s Graph Convolutional Networks (GCNs) are a slight variation on the neighborhood aggregation idea:

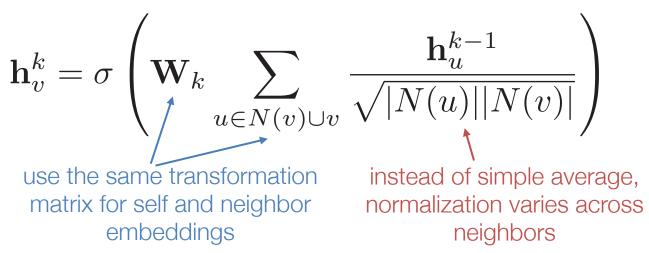
$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)||N(v)|}} \right)$$

Graph Convolutional Networks



Graph Convolutional Networks

- Empirically, they found this configuration to give the best results.
 - More parameter sharing.
 - Down-weights high degree neighbors.



Outline for this Section

- 1. The Basics \checkmark
- 2. Graph Convolutional Networks
- 3. GraphSAGE
- 4. Gated Graph Neural Networks
- 5. Graph Attention Networks
- 6. Subgraph Embeddings

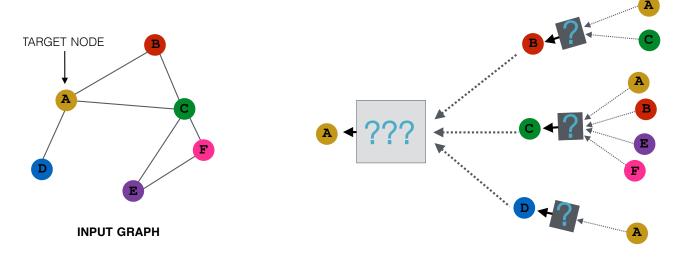
GraphSAGE

Based on material from:

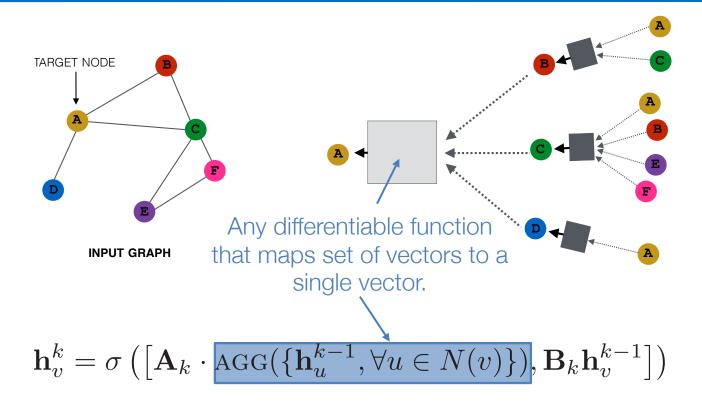
 Hamilton et al., 2017. <u>Inductive Representation Learning on Large Graphs</u>. NIPS.

GraphSAGE Idea

 So far we have aggregated the neighbor messages by taking their (weighted) average, can we do better?



GraphSAGE Idea



GraphSAGE Differences

Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$

GraphSAGE: $\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{W}_{k} \cdot \overline{\operatorname{AGG}\left(\{\mathbf{h}_{u}^{k-1}, \forall u \in N(v)\}\right)}, \mathbf{B}_{k}\mathbf{h}_{v}^{k-1}\right]\right)$ generalized aggregation

GraphSAGE Variants

Mean:

Pool

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$$

• Transform neighbor vectors and apply symmetric vector function. element-wise mean/max

$$AGG = \gamma(\{\mathbf{Qh}_u^{k-1}, \forall u \in N(v)\})$$

- LSTM:
 - Apply LSTM to random permutation of neighbors. $AGG = LSTM ([\mathbf{h}_{u}^{k-1}, \forall u \in \pi(N(v))])$

Outline for this Section

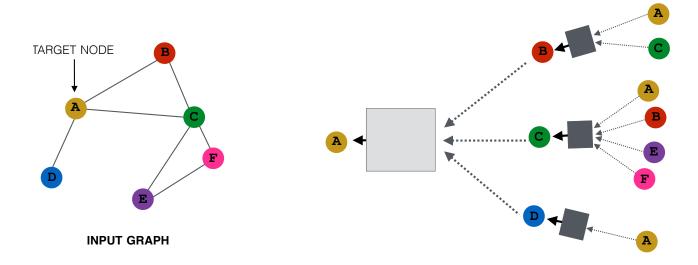
- 1. The Basics \checkmark
- 2. Graph Convolutional Networks
- 3. GraphSAGE 🗸
- 4. Gated Graph Neural Networks
- 5. Graph Attention Networks
- 6. Subgraph Embeddings

Based on material from:

- Li et al., 2016. Gated Graph Sequence Neural Networks. ICLR.
- Gilmer et al., 2017. <u>Neural Message Passing for Quantum</u> <u>Chemistry</u>. *ICML*.

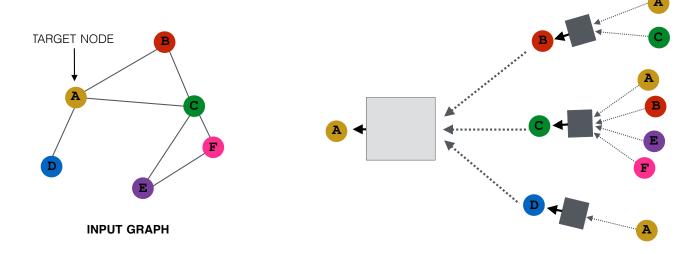
Neighborhood Aggregation

 Basic idea: Nodes aggregate "messages" from their neighbors using neural networks



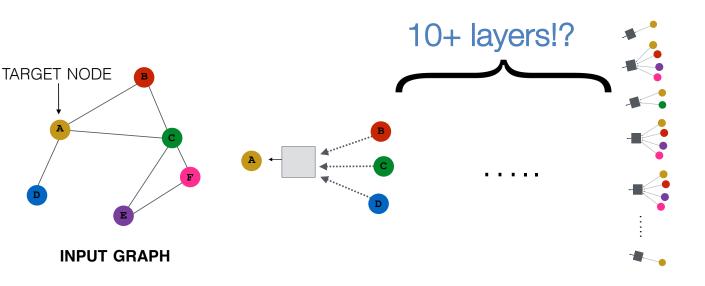
Neighborhood Aggregation

GCNs and GraphSAGE generally only 2-3 layers deep.



Neighborhood Aggregation

But what if we want to go deeper?



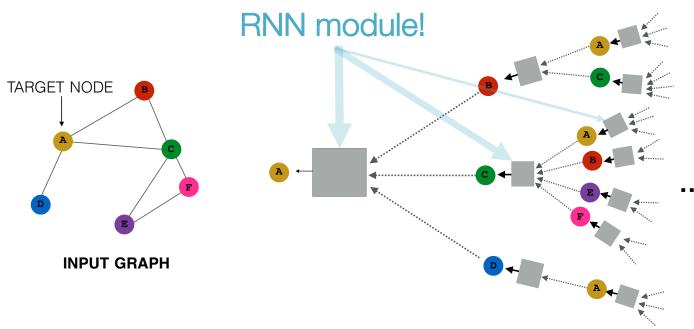
- How can we build models with many layers of neighborhood aggregation?
- Challenges:
 - Overfitting from too many parameters.
 - Vanishing/exploding gradients during backpropagation.
- Idea: Use techniques from modern recurrent neural networks!

Idea 1: Parameter sharing across layers. same neural network across layers TARGET NODE

INPUT GRAPH

Tutorial on Graph Representation Learning, AAAI 2019

Idea 2: Recurrent state update.



The Math

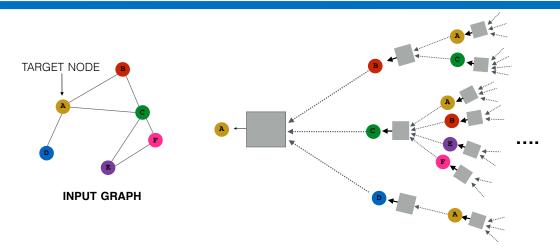
- Intuition: Neighborhood aggregation with RNN state update.
 - 1. Get "message" from neighbors at step k:

$$\mathbf{m}_v^k = \mathbf{W} \sum_{u \in N(v)} \mathbf{h}_u^{k-1}$$

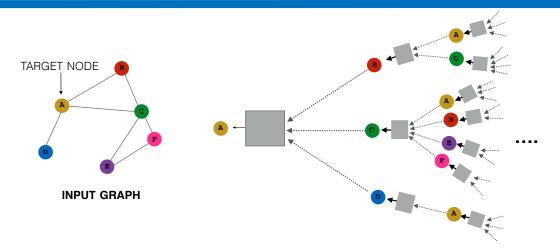
aggregation function does not depend on k

2. Update node "state" using <u>Gated Recurrent</u> <u>Unit (GRU)</u>. New node state depends on the old state and the message from neighbors:

$$\mathbf{h}_v^k = \mathrm{GRU}(\mathbf{h}_v^{k-1}, \mathbf{m}_v^k)$$



- Can handle models with >20 layers.
- Most real-world networks have small diameters (e.g., less than 7).
- Allows for complex information about global graph structure to be propagated to all nodes.



- Useful for complex networks representing:
 - Logical formulas.
 - Programs.

Message-Passing Neural Networks

- Idea: We can generalize the gated graph neural network idea:
 - 1. Get "message" from neighbors at step k:

 $\mathbf{m}_{v}^{k} = \sum_{u \in N(v)} M(\mathbf{h}_{u}^{k-1}, \mathbf{h}_{v}^{k-1}, \mathbf{e}_{u,v}) \quad \text{edge features.}$ $\mathbf{M}_{v}^{k} = U(\mathbf{h}_{v}^{k-1}, \mathbf{m}_{v}^{k}) \quad \text{Generic "message" function (e.g., sum or MLP).}$ $\mathbf{h}_{v}^{k} = U(\mathbf{h}_{v}^{k-1}, \mathbf{m}_{v}^{k}) \quad \text{Generic update function (e.g., LSTM or GRU)}$

Message-Passing Neural Networks

- This is a general conceptual framework that subsumes most GNNs.
 - 1. Get "message" from neighbors at step k:

$$\mathbf{m}_{v}^{k} = \sum_{u \in N(v)} M(\mathbf{h}_{u}^{k-1}, \mathbf{h}_{v}^{k-1}, \mathbf{e}_{u,v})$$

2. Update node "state":

$$\mathbf{h}_v^k = U(\mathbf{h}_v^{k-1}, \mathbf{m}_v^k)$$

 Gilmer et al., 2017. <u>Neural Message Passing for Quantum</u> <u>Chemistry</u>. *ICML*.

Outline for this Section

- 1. The Basics \checkmark
- 2. Graph Convolutional Networks
- 3. GraphSAGE 🗸
- 4. Gated Graph Neural Networks 🗸
- 5. Graph Attention Networks
- 6. Subgraph Embeddings

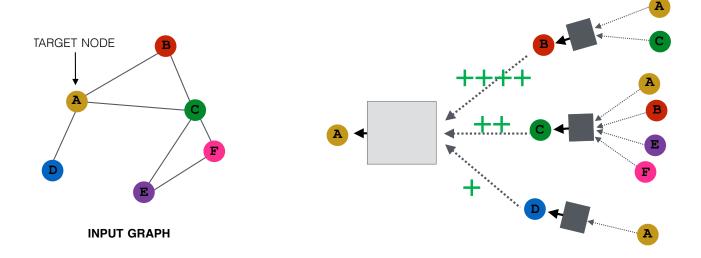
Graph Attention Networks

Based on material from:

• Velickovic et al., 2018. Graph Attention Networks. ICLR.

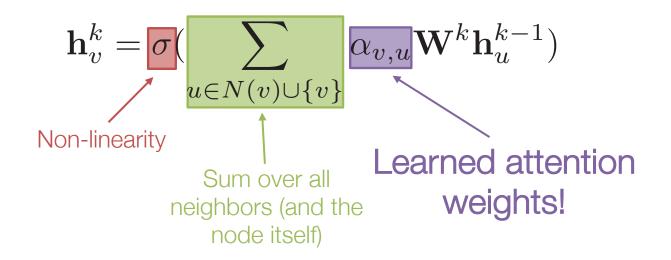
Neighborhood Attention

What if some neighbors are more important than others?



Graph Attention Networks

 Augment basic graph neural network model with attention.



Attention weights

- Various attention models are possible.
- The original GAT paper uses:

$$\alpha_{v,u} = \frac{\exp\left(\text{LeakyReLU}\left(\mathbf{a}^{\top}[\mathbf{Q}\mathbf{h}_{v},\mathbf{Q}\mathbf{h}_{u}]\right)\right)}{\sum_{u'\in N(v)\cup\{v\}}\exp\left(\text{LeakyReLU}\left(\mathbf{a}^{\top}[\mathbf{Q}\mathbf{h}_{v},\mathbf{Q}\mathbf{h}_{u'}]\right)\right)}$$

 Achieved SOTA in 2018 on a number of standard benchmarks.

Attention in general

- Various attention mechanisms can be incorporated into the "message" step:
 - 1. Get "message" from neighbors at step k:

$$\mathbf{m}_{v}^{k} = \sum_{u \in N(v)} M(\mathbf{h}_{u}^{k-1}, \mathbf{h}_{v}^{k-1}, \mathbf{e}_{u,v})$$

2. Update node "state":

$$\mathbf{h}_v^k = U(\mathbf{h}_v^{k-1}, \mathbf{m}_v^k)$$

Incorporate attention here.

Recent advances in graph neural nets (not covered in detail here)

- Generalizations based on spectral convolutions:
 - Geometric Deep Learning (Bronstein et al., 2017)
 - Mixture Model CNNs (Monti et al., 2017)
- Speed improvements via subsampling:
 - FastGCNs (<u>Chen et al., 2018</u>)
 - Stochastic GCNs (<u>Chen et al., 2017</u>)
- And much more!!!

So what is SOTA?

- No consensus...
- Standard benchmarks ~2017-2018
 - Cora, CiteSeer, PubMed
 - Semi-supervised node classification.
 - Extremely noisy evaluation and basic GNN/GCNs are very strong...
- Attention, gating, and other modifications have shown improvements in specific settings (e.g., molecule classification, recommender systems).

Outline for this Section

- 1. The Basics \checkmark
- 2. Graph Convolutional Networks
- 3. GraphSAGE 🗸
- 4. Gated Graph Neural Networks
- 5. Graph Attention Networks 🗸
- 6. Subgraph Embeddings

(Sub)graph Embeddings

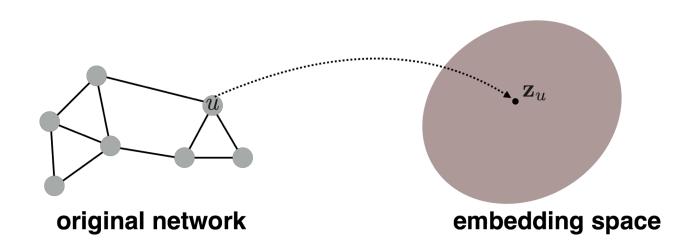
Based on material from:

- Duvenaud et al. 2016. <u>Convolutional Networks on Graphs for Learning</u> <u>Molecular Fingerprints</u>. *ICML*.
- Li et al. 2016. Gated Graph Sequence Neural Networks. ICLR.
- Ying et al, 2018. <u>Hierarchical Graph Representation Learning with Differentiable</u> <u>Pooling</u>. *NeurIPS*.

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

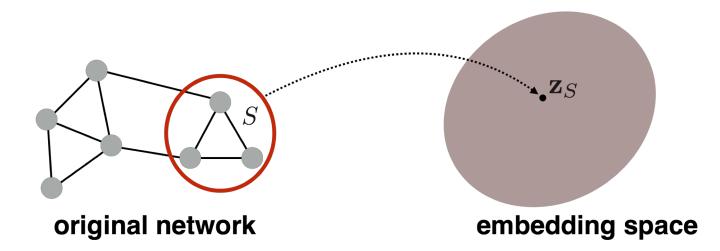
(Sub)graph Embeddings

 So far we have focused on node-level embeddings...

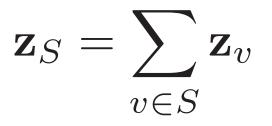


(Sub)graph Embeddings

But what about subgraph embeddings?

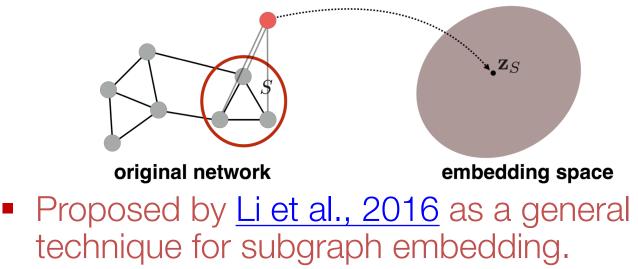


 Simple idea: Just sum (or average) the node embeddings in the (sub)graph

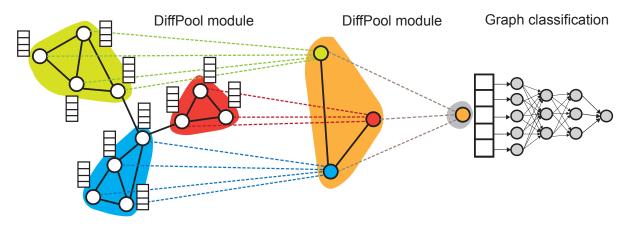


 Used by <u>Duvenaud et al., 2016</u> to classify molecules based on their graph structure.

 Idea: Introduce a "virtual node" to represent the subgraph and run a standard graph neural network.



Idea: Learn how to hierarchically cluster the nodes.



First proposed by <u>Ying et al., 2018</u> and currently SOTA(?).

- Idea: Learn to hierarchically cluster the nodes.
- Basic overview:
 - 1. Run GNN on graph and get node embeddings.
 - 2. Cluster the node embeddings together to make a "coarsened" graph.
 - 3. Run GNN on "coarsened" graph.
 - 4. Repeat.
- Different approaches to clustering:
 - Soft clustering via learned softmax weights (<u>Ying et al., 2018</u>)
 - Hard clustering (<u>Cangea et al., 2018</u> and <u>Gao et al., 2018</u>)